Ultra-Broadband Copper Deployment Strategies & Vendor Leadership

Top Takeaways

Broadbandtrends recently conducted a global service provider survey of Telco operators regarding their plans to deploy Ultra-Broadband Copper Technologies (VDSL2 Vectoring & G.fast). VDSL2 Vectoring is a noise-cancellation technology that enables operators to significantly increase the speeds offered over their existing copper infrastructure. G.fast (ITU-T G.9700) is a fiber to the drop point (FTTdp) architecture that leverages vectoring technology to provide speeds up to 1Gbps over copper.

Key findings of the survey include the following:

- 55 percent of respondents are actively deploying VDSL2 vectoring technology or are in trial and plan to deploy by the end of 2015
- Cost remains the greatest challenge facing operators as they deploy Ultra-Broadband copper technologies
- Although a handful of operators are currently in trial with G.fast, the bulk of deployment is expected to begin in 2017
- The overwhelming driver for deployment of Ultra-Broadband copper technologies is to address the competitive environment.
- Operators currently deploying VDSL2 Vectoring are highly satisfied with the performance and stability, but less satisfied with cost and ease of deployment
- Basements and manholes are the preferred location for G.fast DPUs, but significant regional preference prevail
- Alcatel-Lucent, Huawei, & ADTRAN Top the Ultra-Broadband Copper Vendor rankings.
About this Report

Broadbandtrends 3rd annual Ultra-Broadband Copper Deployment Strategies and Vendor Leadership survey analyzes results from interviews with incumbent and competitive operators in North America, EMEA (Europe, Middle East, and Africa), Asia Pacific, and CALA (Caribbean and Latin America) about their plans and deployment strategies for VDSL2 Vectoring and G.fast. In addition, the survey features operator ratings of 8 vendors (ADTRAN, Alcatel-Lucent, Calix, ECI, Huawei, Iskratel, KEYMILE, and ZTE) on 5 criteria.

Broadbandtrends interviewed via telephone, in-person and on-line, 31 service providers during February and March 2015, regarding their plans for Ultra Broadband Copper deployment. The respondents, from all major regions, represent 42 percent of all deployed DSL lines at the end of 2014 and were either the primary decision maker or have strong influence in the planning and purchasing of Ultra-Broadband Copper solutions.

Participants provided input on a range of areas for both VDSL2 Vectoring and G.fast including timing of deployments; key drivers for ultra-broadband copper; key challenges of ultra-broadband copper; expected speed offerings; average loop lengths for deployment; average node size; % of network expected to be vector & G. fast capable; reverse powering plans; G.fast distribution point location; and perceived success of VDSL2 vectoring deployments.

This Report is 25-pages in length with (21) Figures and (1) Table and is part of Broadbandtrends Continuous Information Service, or available on a stand-alone basis for $1995(USD). To order this report, please contact us at 540.725.9774 or via email at sales@broadbandtrends.com. Additionally this report may be purchased online at http://www.broadbandtrends.com
Table of Contents

- Introduction
- Methodology and Demographics Overview
 - Regional Distribution
 - Level of Influence
 - Survey Participants Represent 42% of Installed DSL Lines Globally
- Survey Results - Deployment Strategies
 - Timing of Deployment (VDSL2 Vectoring & G.fast)
 - Key Drivers to Ultra Broadband Copper Deployment
 - Key Challenges to VDSL2 Vectoring Deployment
 - Key Challenges to G.fast Deployment
 - Reverse Power
 - Average Loop Lengths for VDSL2 Vectoring & G.fast
 - Average Node Size for VDSL2 Vectoring & G.fast
 - Average Speed Offerings for VDSL2 Vectoring & G.fast
 - % of Network Capable of Support VDSL2 Vectoring - Now, 2015, 2016
 - % of Network Capable to Support G.fast - 2016, 2017
 - Reverse Power Plans
 - Location of G.fast Distribution Point Unit
 - Success of VDSL2 Vectoring Deployment
- Survey Results - Vendor Leadership
 - Ultra Broadband Copper DSLAM Vendor Familiarity
 - Vendors Currently Installed and Planned Changes
 - Top Vendors for Selected Criteria
- Conclusions
List of Figures & Tables

Figure 1: Key Drivers for Deeper Fiber
Figure 2: Ultra-Broadband Copper Speeds vs. Distance
Figure 3: Regional Distribution of Survey Participant
Figure 4: Level of Influence
Figure 5: Participants Represent Significant Market Presence
Figure 6: Timing of Ultra-Broadband Copper Deployment
Figure 7: Key Drivers for Ultra-Broadband Copper Deployment
Figure 8: Key Challenges for VDSL 2 Vectoring Deployment
Figure 9: Key Challenges for G.fast/FTTdp Deployment
Figure 10: ETSI Generic Architecture for Reverse Power Feed
Figure 11: Average Loop Lengths for Ultra-Broadband Copper
Figure 12: VDSL2 Vectoring Speeds vs. Distance
Figure 13: Average Node Size Ultra-Broadband Copper
Figure 14: Average Ultra-Broadband Copper Speed Offerings
Figure 15: % of Network Capable of Supporting VDSL2 Vectoring
Figure 16: % of Network Capable of Supporting G.fast/FTTdp
Figure 17: Plans for Reverse Powering
Figure 18: Placement of G.fast Distribution Point Unit
Figure 19: Success Rating of VDSL2 Vectoring
Figure 20: Ultra-Broadband Copper DSLAM Vendor Familiarity
Figure 21: Ultra-Broadband Copper DSLAM Vendors Currently Installed & Planned Changes

Table 1: Ultra Broadband Copper Vendor Leadership